
Kolmogorov-Arnold Networks For
Time Series Forecasting

Rémi Genet 1 Hugo Inzirillo 2

1DRM, Université Paris Dauphine 2CREST, Institut Polytechnique de Paris

Kolmogorov-Arnold Networks (Ziming Liu et al., April 2024)

Kolmogorov-Arnold Networks (KANs) revolutionized neural network architecture in 2024 by introducing a fundamentally different approach to neural

computation:

Instead of fixed activation functions (like ReLU, tanh), KANs use learnable activation functions based on b-splines

Each connection between neurons has its own unique activation function

This design is inspired by Kolmogorov’s universal approximation theorem

Figure 1. KAN Network architecture

Figure 2. B-Spline Basis Function

KANs demonstrate remarkable performance on synthetic datasets, significantly outperforming traditional MLPs in function approximation tasks. How-

ever, there are trade-offs to consider:

Computational overhead: The learnable activation functions increase training complexity

Variable performance: Results on real-world datasets can be less consistent, depending on data characteristics

TKAN: Temporal Kolmogorov-Arnold Networks

While KANs offer a novel alternative to MLPs, they lack proper mechanisms for time series data. To do so we first introduced the recurrent KAN layer

(RKAN), that incorporate a simple memory mecanism. The inputs that is fed to each sub KAN layers in the RKAN are created by doing:

sl,t = Wl,x̃xt +Wl,h̃h̃l,t−1, (1)

whereWl,x̃ is the weight of the l-th layer applied to xt which is the input at time t. The ”memory” step h̃l,t is defined as a combination of past hidden

states, such as:

h̃l,t = Whhh̃l,t−1 +Whz õt, (2)

Figure 3. Two-layer TKAN architecture showing stacked recurrent layers with memory management

We then used RKAN inside a broader TKAN architecture, which memory management is inspired by LSTM but adapted for multiple layers:

ft = σ(Wfxt + Ufht−1 + bf) (3)

it = σ(Wixt + Uiht−1 + bi) (4)

rt = Concat[φ1(s1,t), φ2(s2,t), ..., φL(sL,t)] (5)

ot = σ(Wort + bo) (6)

where the final cell and hidden states combine all layers:

ct = ft � ct−1 + it � c̃t (7)

ht = ot � tanh(ct) (8)

TKAT: Temporal Kolmogorov-Arnold Transformer

The TKAT extends TKAN’s capabilities by adopting a transformer-like architecture for sequence-to-sequence tasks.

Figure 4. TKAT Architecture showing encoder-decoder structure with TKAN layers

SigKAN: Signature-Weighted Kolmogorov-Arnold Networks

SigKAN enhances KAN’s capabilities by incorporating path signatures - a mathematical tool that captures geometric features of sequential data.

Figure 5. SigKAN layer architecture

Figure 6. GRKAN Layer

The SigKANmodel integrates path signatureswith Kolmogorov-Arnold Networks (KAN) layers, combining a Gated Residual KAN (GRKAN) and a learnable

path signature layer to enhance predictive capabilities. Key components include:

Gated Residual KAN: Controls information flow through gated connections.

Learnable path signature layer: Computes path signatures for each sequence with learnable parameters.

Path Signature Layer: Given an N-dimensional path (Xt)t∈[0,T], the first-order path signature S(X)n
0,t for a one-dimensional path (Xn,t) is:

S(X)n
0,t =

∫ t

0
dXn

s . (9)

Higher-order terms involve iterated integrals of multiple paths. The second-order term S(X)n,m
0,t is:

S(X)n,m
0,t =

∫ t

0
S(X)n

0,s dX
m
s . (10)

The k-th level signature is computed iteratively:

S(X)i1,...,ik

0,t =
∫ t

0
S(X)i1,...,ik−1

0,s dXik
s . (11)

The path signature S(X)0,T is the ordered set of all such terms:

S(X)0,T = (1, S(X)1
0,T , S(X)2

0,T , . . . , S(X)N
0,T , S(X)1,1

0,T ,

S(X)1,2
0,T , . . . , S(X)N,N

0,T , S(X)1,1,1
0,T , . . .).

(12)

Gated Residual KAN (GRKAN): GRKAN uses gated residual connections to model complex temporal relationships. The GRKAN layer is defined as:

GRNω (x) = LayerNorm (x+ GLUω(η1)) ,
η1 = KAN(ϕη1 (.), η2),
η2 = KAN(ϕη2 (.), x).

(13)

The GLU gating mechanism for input γ is:

GLUω(γ) = σ(W4,ω γ + b4,ω) � (W5,ω γ + b5,ω), (14)

where σ is the sigmoid activation, and � denotes element-wise Hadamard product.

Learnable Path Signature Transformation: For each coordinate path Xn, we apply learnable weights wn:

X̃n,i = wn � xn,i. (15)

The k-th order path signature is then:

S(X̃) =
(

1,
(∫ 1

0
dX̃i1

t1

)
1≤i1≤N

,

(∫ 1

0

∫ t1

0
dX̃i2

t2
dX̃i1

t1

)
1≤i1,i2≤N

, . . .

)
. (16)

The transformed path signature vector S(X̃) is then:

S(X̃) =
[
S(X̃)1, S(X̃)2, S(X̃)3,

]
. (17)

Output Layer The GRKAN output hs is normalized and used as weights:

ψ = SoftMax(hs). (18)

The global SigKAN output is:

ψ � KAN(X̃). (19)

Generalized SigKAN Network The SigKAN network structure across layers is:

h0 = x,

hj = SoftMax(GRKANj(S(h̃j−1))) � KANj(hj−1),
y = hL,

(20)

where j = 1, 2, . . . , L denote the position of the layer. L is the final layer of the network.

Presented Models performance depending on horizon

Table 1. R2 Average: TKAT vs Benchmark for Volume Prediction

Time TKAT w. TKAN TKAT w. LSTM TKAN GRU LSTM

1 0.30519 0.29834 0.33736 0.36513 0.35553

3 0.21801 0.22146 0.21227 0.20067 0.06122

6 0.17955 0.17584 0.13784 0.08250 -0.22583

9 0.16476 0.15378 0.09803 0.08716 -0.29058

12 0.14908 0.15179 0.10401 0.01786 -0.47322

15 0.14504 0.12658 0.09512 0.03342 -0.40443

remi.genet@dauphine.psl.eu Kolmogorov-Arnold Networks Poster - Université-Paris Dauphine 2024 hugo.inzirillo@ip-paris.fr

mailto:remi.genet@dauphine.psl.eu
mailto:hugo.inzirillo@ip-paris.fr

	Model Architecture

