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Kolmogorov-Arnold Networks (Ziming Liu et al., April 2024) SigKAN: Signature-Weighted Kolmogorov-Arnold Networks

Kolmogorov-Arnold Networks (KANSs) revolutionized neural network architecture in 2024 by introducing a fundamentally different approach to neural Sigk AN enhances KAN'’s capabilities by incorporating path signatures - a mathematical tool that captures geometric features of sequential data.
computation:
® Instead of fixed activation functions (like ReLU, tanh), KANs use learnable activation functions based on b-splines Y
® Each connection between neurons has its own unique activation function T
® This design is inspired by Kolmogorov's universal approximation theorem i »[ Add & Norm ]
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Figure 5. SigiAN layer architecture

The Sigk AN model integrates path signatures with Kolmogorov-Arnold Networks (KAN) layers, combining a Gated Residual KAN (GRKAN) and a learnable
path signature layer to enhance predictive capabilities. Key components include:

Figure 2. B-Spline Basis Function

® Gated Residual KAN: Controls information flow through gated connections.

) . ® Learnable path signature layer: Computes path signatures for each sequence with learnable parameters.

Figure 1. KAN Network architecture

Path Signature Layer: Given an N-dimensional path (Xt):c(o,7), the first-order path signature S(X)g , for a one-dimensional path (X +) is:

t
KANs demonstrate remarkable performance on synthetic datasets, significantly outperforming traditional MLPs in function approximation tasks. How- S(x)n, = / axm. (9)
ever, there are trade-offs to consider: ' 0

n ’"’L H
" Computational overhead: The learnable activation functions increase training complexity Higher-order terms involve iterated integrals of multiple paths. The second-order term S(X)

. . Results on real-world datasets can be less consistent, depending on data characteristics .
seopr = [ seog. axr. (10)
0
TKAN: Temporal Kolmogorov-Arnold Networks The J-th level signature s computed iteratively: G
S(X)iy o = / S(X)iy it dx i (11)
0
While KANs offer a novel alternative to MLPs, they lack proper mechanisms for time series data. To do so we first introduced the recurrent KAN layer
(RKAN), that incorporate a simple memory mecanism. The inputs that is fed to each sub KAN layers in the RKAN are created by doing: The path signature S(X)o.7 is the ordered set of all such terms:
st = Wiame + Wy i, (1) S(X)or = (LSO 72 SO .- . SOV, SCOL (12)

; S(X)o, SN SRt ).
where W z is the weight of the I-th layer applied to z; which is the input at time ¢. The "memory” step h; ¢ is defined as a combination of past hidden ’ ’ ’
states, such as:

hue = Wanhii—1 + W64, (2) Gated Residual KAN (GRKAN): GRKAN uses gated residual connections to model complex temporal relationships. The GRKAN layer is defined as:

GRN,, (z) = LayerNorm (z + GLU(n1)) ,
m = KAN(gy, (), 72), (13)
n2 = KAN(¢pn, (), ).

The GLU gating mechanism for input - is:

OLUw(7) = o(Waw 7 + baw) © (Wsw v+ bs.0), (14)

where o is the sigmoid activation, and ® denotes element-wise Hadamard product.

Learnable Path Signature Transformation: For each coordinate path X,,, we apply learnable weights w,,:

Xn,z‘:wn@mn,i. (15)
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The k-th order path signature is then:
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The transformed path signature vector S(X) is then:

25N S(X) = [S(X)1, 5(X)2, 5(X)s, ... - (17)

Output Layer The GRKAN output hs is normalized and used as weights:
F|gu re 3. Two-layer TKAN architecture showing stacked recurrent layers with memory management

W = SoftMax(hs). (18)
We then used RKAN inside a broader TKAN architecture, which memory management is inspired by LSTM but adapted for multiple layers: The global SigKAN output is:
b © KAN(X). (19)
fe=0(Wysze + Ughi—1 + by) (3)
it = o(Wize + Ushe—1 + bs) (4) Generalized Sigk AN Network The Sigk AN network structure across layers is:
= Concat[¢1(s1,t), p2(s2,t), -, dr(sL,¢)] (5) ho = =z,
or = o (Wors + by) (6) h; = SoftMax(GRKAN;; (S(h;_1))) ® KAN; (hj_1), (20)
y= hL7
where the final cell and hidden states combine all layers:
where 7 = 1,2,..., L denote the position of the layer. L is the final layer of the network.
=fiOci—1+1 O& (7)
ht =0+ ©® tanh(ct) (8) L] u
Presented Models performance depending on horizon
TKAT: Temporal Kolmogorov-Arnold Transformer Model and errors based on number of steps forward
The TKAT extends TKAN’s capabilities by adopting a transformer-like architecture for sequence-to-sequence tasks. 0006079
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T : 1 0.30519 0.29834 0.33736 0.36513  0.35553
- _ L N VSN |_ . 3 0.21801 0.22146 0.21227 0.20067  0.06122
J . J o) 0.17955 0.17584 0.13784 0.08250 -0.22583
T 9 0.16476 0.15378 0.09803 0.08716 -0.29058
Kith J 12 0.14908 0.15179 0.10401 0.01786 -0.47322
T T 15 0.14504 0.12658 0.09512 0.03342 -0.40443
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