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VWAP is one of the most common strategic orders for institutional investors, as it presents several advantages:

As it splits the execution over a given period, it reduces the instantaneous market impact

With its pre-defined duration, investors know exactly when the order will complete

VWAP serves as an unbiased benchmark that investors can use to evaluate their brokers’ performance

The Volume Weighted Average Price (VWAP) is calculated by weighting each transaction price by its corresponding trading volume. For a given time

period, it is computed as:

VWAP =
∑n

i=1 PiVi∑n
i=1 Vi

(1)

where Pi represents the price of the i-th transaction and Vi its corresponding volume. This formulation naturally gives more weight to prices at which

larger volumes were traded. VWAP serves as an ideal benchmark for trading performance because it represents a zero-sum game: the total value gained

by traders who outperformed VWAP exactly equals the total value lost by those who underperformed it.

Current literature primarily focuses on a key assumption: perfectly predicting the volume curve over the execution period would achieve optimal VWAP

execution.

However, this approach largely overlooks the critical cross-interaction between volume and volatility.

While calibrating a model to predict the volume curve (whether static or dynamic) is relatively straightforward, developing one that leverages both

interactions to optimize execution strategy proves significantly more challenging with conventional tools.

This is where deep learning offers a compelling solution:

Deep learning’s foundation rests on automatic differentiation through back-propagation

At its core, deep learning consists of optimizing functions with large parameter spaces using sophisticated optimizers

Crucially, both absolute and quadratic deviations of VWAP are differentiable functions

We formulate VWAP execution as an optimization problem by minimizing one of those three loss functions:

1. Quadratic VWAP Loss:

LQ = E
[(
VWAPachieved

VWAPmarket
− 1
)2
]

(2)

2. Absolute VWAP Loss:
LA = E

[∣∣∣∣VWAPachievedVWAPmarket
− 1
∣∣∣∣] (3)

3. Volume Curve Loss:

LV = E
[

n∑
i=1

(
vi∑n

j=1 vj
−

Vi∑n
j=1 Vj

)2]
(4)

We implemented a static linear model within a neural network framework, utilizing the architecture described in ATemporal Linear Network for Time Series

Forecasting, Genet and Inzirillo. The softmax activation function determines optimal quantity allocation across timesteps. The implementation proceeds

as follows:

1. TLN Output Generation: Let v[t,t+h] = TLN(xt) represent the raw output of the Temporal Linear Network for the horizon [t, t + h], where xt

denotes the input features at time t.

2. Softmax Transformation: Trading quantities q[t,t+h] are derived by applying the softmax function to normalize the TLN output:

qi =
evi∑t+h

j=t evj

for i ∈ [t, t + h]

3. Optimization Strategy: The model minimizes one of the previously defined loss functions using the Adam optimizer.

We evaluated our model against the following benchmarks:

Naive: Equal-weighted allocation across all timesteps

Fixed Volume Curve: Pre-optimized curve based on training data, operating without real-time market information

Static Linear: Standard linear regression model for volume curve prediction

Dynamic Linear: Adaptive linear regression following the methodology of J. Bialkowski, S. Darolles, and G. Le Fol, ”Improving VWAP strategies: A

dynamic volume approach”

Table 1. VWAP Optimization Results

Model Type Asset Optimization Abs. VWAP Loss (10−2) Quad. VWAP Loss (10−4) R² Vol. Curve

Naive BTC N/A 0.158743 0.087808 0.000000

StaticVWAP BTC Absolute 0.119742 0.050175 -0.133930

StaticVWAP BTC Quadratic 0.120810 0.047403 -0.361577

StaticVWAP BTC Volume 0.149938 0.084989 0.134904

Dynamic Linear BTC N/A 0.134621 0.076604 0.174309

Static Linear BTC N/A 0.144357 0.081390 0.146436

Fixed Volume Curve BTC Absolute 0.129670 0.054213 -0.273680

Fixed Volume Curve BTC Quadratic 0.127530 0.049655 -0.467000

Fixed Volume Curve BTC Volume 0.160575 0.089770 -0.003349

Naive ETH N/A 0.177758 0.116196 0.000000

StaticVWAP ETH Absolute 0.138627 0.076506 -0.146691

StaticVWAP ETH Quadratic 0.139999 0.073385 -0.297154

StaticVWAP ETH Volume 0.170102 0.122055 0.109135

Dynamic Linear ETH N/A 0.154125 0.140239 -6.611908

Static Linear ETH N/A 0.165134 0.121097 -0.414701

Fixed Volume Curve ETH Absolute 0.148407 0.076206 -0.269217

Fixed Volume Curve ETH Quadratic 0.147058 0.072852 -0.348835

Fixed Volume Curve ETH Volume 0.174744 0.112633 -0.006033

Naive XRP N/A 0.223855 0.275925 0.000000

StaticVWAP XRP Absolute 0.182436 0.187474 -0.268477

StaticVWAP XRP Quadratic 0.188880 0.158377 -0.800538

StaticVWAP XRP Volume 0.218816 0.291965 0.053552

Dynamic Linear XRP N/A 0.200789 0.274814 0.095260

Static Linear XRP N/A 0.211910 0.293099 0.056375

Fixed Volume Curve XRP Absolute 0.186341 0.178947 -0.347910

Fixed Volume Curve XRP Quadratic 0.189142 0.152440 -0.794792

Fixed Volume Curve XRP Volume 0.224941 0.276570 -0.001512

To illuminate the mechanisms behind this enhanced efficiency, we compare the allocation curves produced by each model:

(a) Optimized using Linear Regression (b) Optimized for Absolute deviation

(c) Optimized for Quadratic deviation (d) Optimized for Volume Curve

The allocation curves generated by our deep learning approach exhibit notable deviations from traditional volume curves, particularly showing increased

allocationweights towards the order’s end. This strategic overweighting serves as an effective hedge against potential late-period spikes in both volatility

and volume during order execution.

Recurrent Networks for Dynamic VWAP Execution

Having demonstrated the effectiveness of deep learning for VWAP execution, we next sought to enhance our approach by incorporating dynamic

capabilities.

While our initial TLN model generates allocation curves at the order’s inception, it lacks the ability to adapt during execution.

Moreover, traditional methods for introducing dynamic behavior prove incompatible with our approach due to fundamental architectural differences.

To achieve true dynamic adaptation, we leverage recurrent neural networks (RNNs):

RNNs are deep learning architectures designed to process sequential data iteratively

They employ sophisticated memory mechanisms to incorporate historical information

This enables predictions that simultaneously account for both historical context and current market conditions

Figure 2. Proposed dynamic VWAP architecture

The architecture consists of four key components:

A learnable base volume curve with trainable parameters that establish the default execution profile

A recurrent neural network block implementing the Temporal Kolmogorov-Arnold Networks architecture (Genet and Inzirillo)

Time-specific multilayer perceptrons that integrate both recurrent block outputs and previous predictions at each timestep

A transformation layer that applies hyperbolic tangent activation and adds unity, mapping outputs to [0,2] to serve as multiplicative adjustments to

the base curve

Table 2. VWAP Optimization Results for Selected Models and Cryptocurrencies

Model Type Asset Optimization Abs. VWAP Loss (10−2) Quad. VWAP Loss (10−4) R² Vol. Curve

Naive BTC N/A 0.15874311 0.08780818 0.00000000

StaticVWAP BTC Absolute 0.11927138 0.04950001 -0.15073566

StaticVWAP BTC Quadratic 0.12114690 0.04740549 -0.36392904

StaticVWAP BTC Volume Curve 0.14936921 0.08490292 0.13865099

DynamicVWAP BTC Absolute 0.10525936 0.04129920 -0.25283452

DynamicVWAP BTC Quadratic 0.11716457 0.04235737 -0.43806944

DynamicVWAP BTC Volume Curve 0.14388469 0.10851773 0.53748146

Naive ETH N/A 0.17775816 0.11619556 0.00000000

StaticVWAP ETH Absolute 0.13896361 0.07704772 -0.13596994

StaticVWAP ETH Quadratic 0.13992102 0.07361006 -0.28744147

StaticVWAP ETH Volume Curve 0.16925061 0.12173233 0.11599889

DynamicVWAP ETH Absolute 0.12090351 0.05820394 -0.36164006

DynamicVWAP ETH Quadratic 0.13420704 0.06155421 -0.34871240

DynamicVWAP ETH Volume Curve 0.15213849 0.14477868 0.55199230

Naive XRP N/A 0.22385468 0.27592453 0.00000000

StaticVWAP XRP Absolute 0.18250506 0.18804847 -0.26329018

StaticVWAP XRP Quadratic 0.18838942 0.16050903 -0.70089282

StaticVWAP XRP Volume Curve 0.21978152 0.29401255 0.05323325

DynamicVWAP XRP Absolute 0.17419565 0.17708713 -0.39368663

DynamicVWAP XRP Quadratic 0.18598679 0.14618580 -0.69780867

DynamicVWAP XRP Volume Curve 0.20582119 0.36081353 0.47710991

VWAP Execution with Signature-Enhanced Transformers: A
Multi-Asset Learning Approach

In our previous papers, models were calibrated and deployed on individual assets. While effective, this approach necessitates increasingly complex

production pipelines, particularly in cryptocurrency markets where new assets are frequently introduced.

To address this limitation, we enhance our model with a more sophisticated architecture inspired by A Temporal Kolmogorov-Arnold Transformer for Time

Series Forecasting (Genet and Inzirillo). This design leverages attention mechanisms while maintaining causality through appropriate masking to prevent

forward-looking bias.

Furthermore, we incorporate a learnable path signature layer to generate additional covariates over extended sequences, offering superior computational

efficiency compared to traditional RNN approaches for long-sequence processing.

Figure 3. Signature-Enhanced Transformer Architecture for Multi-Asset VWAP Execution

We evaluate performance through comparative analysis, measuring average improvements relative to the equally-weighted baseline. The models com-

pared are:

AFD: Asset-Fitted Dynamic model from our previous work (note: test asset distinction not applicable)

GFD: Globally-Fitted Dynamic model from our previous work

GFT-Sig: Globally-Fitted Dynamic Transformer with signature components, representing our complete proposed model

GFT: Globally-Fitted Dynamic Transformer without path signature components, serving as an ablation study

All results presented below are out-of-sample evaluations, where ’train’ and ’test’ designate whether the assets were present in the model’s training

dataset. Both asset-fitted and globally-fitted models are evaluated using identical out-of-sample test periods across all assets to ensure fair comparison.

Table 3. Comparative Performance Analysis: Average Improvement over Naive Baseline by Model and Asset Category

Model Train/Test Absolute VWAP Loss Improvement Quadratic VWAP Loss Improvement

AFD Test 16.46% 32.68%

AFD Train 15.79% 31.09%

GFD Test 19.22% 35.18%

GFD Train 19.78% 36.91%

GFT Test 20.22% 26.18%

GFT Train 20.01% 25.56%

GFT-Sig Test 21.87% 35.96%

GFT-Sig Train 21.91% 36.98%
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