Programmation Orientée Objet en Python
  • Back to Main Website
  • Home
  • Introduction: Histoire et Concepts
    • Introduction: Histoire et Concepts
    • Histoire de la programmation
    • Première Structuration des données
    • Naissance de la POO
    • Python: tout n’est qu’objet
    • Python : Simplicité des objets et performance sous-jacente
    • Classes en Python : Concepts fondamentaux

    • Travaux Pratiques
    • Construire sa propre Liste
    • Construire son propre DataFrame
  • Encapsulation, Héritage, Composition et Dunder
    • Encapsulation, Heritage, Composition et Dunder
    • Encapsulation en Python
    • Héritage en Python : Concept et intérêt
    • Héritage vs Composition
    • Méthodes Dunder en Python
    • Python call Method: A Fun Exploration

    • Travaux Pratiques
    • TP: Heritage avec le pricing d’option
    • TP : Ajouter des méthodes dunder à DataFrameSimple
    • TP : Étendre la classe Liste avec des méthodes dunder
    • TP: Dunder Method with Tensor for Automatic Differentiation
  • Polymorphisme et Surcharge
    • Polymorphisme et Surcharge
    • Polymorphism in Object-Oriented Programming
    • Polymorphism in Python: Function Overloading and Type Checking
    • Class Creation: Standard vs type()
    • Type Hinting, Typing Module, and Linters in Python
    • Abstract Classes
    • Protocol Classes

    • Travaux Pratiques
    • TP
  • Decorators
    • Design Patterns
    • The decorator pattern
    • Decorator Practically
    • Built-in Decorators and Standard Library Decorators in Python
    • Practical Decorators in Python Libraries

    • Travaux Pratiques
    • TP: Monte Carlo Option Pricing with Decorators
    • TP: Optimizing Heston Model Monte Carlo Simulation
  • Project Management and Packaging
    • Project and Package
    • Organizing Python Projects
    • Understanding imports
    • Python Package Management and Virtual Environments
    • Unit Testing in Python

    • Travaux Pratiques
    • TP: Creating a Linear Regression Package
  • Design Patterns
    • OOP Design Patterns
    • Python-Specific Design Patterns
    • Creation Design Patterns
    • Structural Design Patterns
    • Behavioral Design Pattern

    • Travaux Pratiques
    • TP
  • Sujets de Projets possibles
    • Projets
    • Projets POO - 2024-2025
  • Code source
  1. Class Creation: Standard vs type()
  • Polymorphisme et Surcharge
  • Polymorphism in Object-Oriented Programming
  • Polymorphism in Python: Function Overloading and Type Checking
  • Class Creation: Standard vs type()
  • Type Hinting, Typing Module, and Linters in Python
  • Abstract Classes
  • Protocol Classes
  • Travaux Pratiques
    • TP

On this page

  • Class Creation: Standard vs type()
    • Standard Class Creation
    • Class Creation with type()
    • Inheritance Example
    • Equivalence and Use Cases
    • Potential Issues with Multiprocessing
    • Conclusion

Class Creation: Standard vs type()

Course
Python Intermediate
Compare standard class creation with dynamic creation using type() in Python, understanding their equivalence and potential issues.
Author

Remi Genet

Published

2024-10-21

Class Creation: Standard vs type()

In Python, we typically create classes using the class keyword. However, Python also provides a way to create classes dynamically using the type() function. Let’s compare these two methods and understand when and why you might use type() for class creation.

Standard Class Creation

Here’s how we normally create a class in Python:

Class Creation with type()

Now, let’s create the exact same class using type():

The type() function takes three arguments: 1. The name of the class as a string 2. A tuple of base classes (empty in this case) 3. A dictionary of attributes and methods

Inheritance Example

Let’s see how inheritance works with both methods:

Standard way:

Using type():

Equivalence and Use Cases

It’s important to understand that these two methods are equivalent - they produce the same result. The class keyword is syntactic sugar for what type() does under the hood.

Using type() can be useful in scenarios where you need to create classes dynamically based on runtime information. For example:

  • Generating classes based on data schemas
  • Implementing plugin systems
  • Creating domain-specific languages

However, for most use cases, the standard class syntax is more readable and maintainable.

Potential Issues with Multiprocessing

When using multiprocessing in Python, dynamically created classes can sometimes cause issues. This is because classes created with type() at runtime might not be picklable, which is required for multiprocessing in Python.

For example:

This code might raise a PicklingError because the dynamically created class is not defined at the top level of a module.

Conclusion

While type() provides a way to create classes dynamically, it’s generally better to stick with the standard class syntax for most use cases. Dynamic class creation can be powerful but can also lead to code that’s harder to understand and maintain. It’s a tool best reserved for specific scenarios where runtime class creation is necessary.

Remember, clear and readable code is usually preferable to clever tricks. Use dynamic class creation judiciously and always consider the long-term maintainability of your code.

Back to top
Polymorphism in Python: Function Overloading and Type Checking
Type Hinting, Typing Module, and Linters in Python

Programmation Orienté Object en Python, Rémi Genet.
Licence
Code source disponible sur Github

 

Site construit avec et Quarto
Inspiration pour la mise en forme du site ici
Code source disponible sur GitHub