Programmation Orientée Objet en Python
  • Back to Main Website
  • Home
  • Introduction: Histoire et Concepts
    • Introduction: Histoire et Concepts
    • Histoire de la programmation
    • Première Structuration des données
    • Naissance de la POO
    • Python: tout n’est qu’objet
    • Python : Simplicité des objets et performance sous-jacente
    • Classes en Python : Concepts fondamentaux

    • Travaux Pratiques
    • Construire sa propre Liste
    • Construire son propre DataFrame
  • Encapsulation, Héritage, Composition et Dunder
    • Encapsulation, Heritage, Composition et Dunder
    • Encapsulation en Python
    • Héritage en Python : Concept et intérêt
    • Héritage vs Composition
    • Méthodes Dunder en Python
    • Python call Method: A Fun Exploration

    • Travaux Pratiques
    • TP: Heritage avec le pricing d’option
    • TP : Ajouter des méthodes dunder à DataFrameSimple
    • TP : Étendre la classe Liste avec des méthodes dunder
    • TP: Dunder Method with Tensor for Automatic Differentiation
  • Polymorphisme et Surcharge
    • Polymorphisme et Surcharge
    • Polymorphism in Object-Oriented Programming
    • Polymorphism in Python: Function Overloading and Type Checking
    • Class Creation: Standard vs type()
    • Type Hinting, Typing Module, and Linters in Python
    • Abstract Classes
    • Protocol Classes

    • Travaux Pratiques
    • TP
  • Decorators
    • Design Patterns
    • The decorator pattern
    • Decorator Practically
    • Built-in Decorators and Standard Library Decorators in Python
    • Practical Decorators in Python Libraries

    • Travaux Pratiques
    • TP: Monte Carlo Option Pricing with Decorators
    • TP: Optimizing Heston Model Monte Carlo Simulation
  • Project Management and Packaging
    • Project and Package
    • Organizing Python Projects
    • Understanding imports
    • Python Package Management and Virtual Environments
    • Unit Testing in Python

    • Travaux Pratiques
    • TP: Creating a Linear Regression Package
  • Design Patterns
    • OOP Design Patterns
    • Python-Specific Design Patterns
    • Creation Design Patterns
    • Structural Design Patterns
    • Behavioral Design Pattern

    • Travaux Pratiques
    • TP
  • Sujets de Projets possibles
    • Projets
    • Projets POO - 2024-2025
  • Code source
  1. Travaux Pratiques
  2. TP: Monte Carlo Option Pricing with Decorators
  • Design Patterns
  • The decorator pattern
  • Decorator Practically
  • Built-in Decorators and Standard Library Decorators in Python
  • Practical Decorators in Python Libraries
  • Travaux Pratiques
    • TP: Monte Carlo Option Pricing with Decorators
    • TP: Optimizing Heston Model Monte Carlo Simulation

On this page

  • TP: Monte Carlo Option Pricing with Decorators
    • Scenario: Flexible Option Pricing System
    • Step 1: Implement the Base Monte Carlo Simulator
    • Step 2: Implement the Decorator
    • Step 3: Use the Decorator
    • Your Task
    • Hints
    • Bonus Challenges
  1. Travaux Pratiques
  2. TP: Monte Carlo Option Pricing with Decorators

TP: Monte Carlo Option Pricing with Decorators

Course
Financial Programming
A hands-on practical exercise on creating a decorator that injects payoff functions into a Monte Carlo option pricing simulator, exploring advanced concepts in Python and financial modeling.
Author

Remi Genet

Published

2024-10-21

TP: Monte Carlo Option Pricing with Decorators

In this practical exercise, we’ll create a Monte Carlo simulator for option pricing and use decorators to inject different payoff functions into the simulator. This approach will allow us to easily create and price various types of options using the same underlying simulation framework.

Scenario: Flexible Option Pricing System

We want to build a system that can price different types of options using Monte Carlo simulation. The system should be flexible enough to handle various payoff structures without modifying the core simulation logic.

Step 1: Implement the Base Monte Carlo Simulator

First, let’s implement our base MonteCarloSimulator class:

Step 2: Implement the Decorator

Now, implement a decorator called option_pricer. This decorator should:

  1. Take a payoff function as input
  2. Create a new class that inherits from MonteCarloSimulator
  3. Inject the input function as the payoff method of the new class
  4. Return the new class

Here’s the skeleton for the decorator:

Step 3: Use the Decorator

Once you’ve implemented the decorator, you should be able to use it like this:

Your Task

  1. Implement the option_pricer decorator to make the above code work.
  2. Ensure that the new classes created by the decorator inherit from MonteCarloSimulator.
  3. Make sure that the payoff method in the new classes calls the decorated function.

Hints

  • You can use type() to create a new class dynamically.
  • The payoff function will become a method, so it needs to take self as its first parameter.
  • You can use __name__ attribute of the function to name your new class.
  • You can use functools wraps to keep tracking of the base function

Bonus Challenges

  1. Modify the decorator to allow for additional parameters in the payoff function, such as strike price or barrier levels.

  2. Implement a more complex option type, such as an Asian option, where the payoff depends on the average stock price over the simulation period.

  3. Add a method to calculate the standard error of the Monte Carlo estimate and use it to compute confidence intervals for the option prices.

Back to top
Practical Decorators in Python Libraries
TP: Optimizing Heston Model Monte Carlo Simulation

Programmation Orienté Object en Python, Rémi Genet.
Licence
Code source disponible sur Github

 

Site construit avec et Quarto
Inspiration pour la mise en forme du site ici
Code source disponible sur GitHub