Programmation Orientée Objet en Python
  • Back to Main Website
  • Home
  • Introduction: Histoire et Concepts
    • Introduction: Histoire et Concepts
    • Histoire de la programmation
    • Première Structuration des données
    • Naissance de la POO
    • Python: tout n’est qu’objet
    • Python : Simplicité des objets et performance sous-jacente
    • Classes en Python : Concepts fondamentaux

    • Travaux Pratiques
    • Construire sa propre Liste
    • Construire son propre DataFrame
  • Encapsulation, Héritage, Composition et Dunder
    • Encapsulation, Heritage, Composition et Dunder
    • Encapsulation en Python
    • Héritage en Python : Concept et intérêt
    • Héritage vs Composition
    • Méthodes Dunder en Python
    • Python call Method: A Fun Exploration

    • Travaux Pratiques
    • TP: Heritage avec le pricing d’option
    • TP : Ajouter des méthodes dunder à DataFrameSimple
    • TP : Étendre la classe Liste avec des méthodes dunder
    • TP: Dunder Method with Tensor for Automatic Differentiation
  • Polymorphisme et Surcharge
    • Polymorphisme et Surcharge
    • Polymorphism in Object-Oriented Programming
    • Polymorphism in Python: Function Overloading and Type Checking
    • Class Creation: Standard vs type()
    • Type Hinting, Typing Module, and Linters in Python
    • Abstract Classes
    • Protocol Classes

    • Travaux Pratiques
    • TP
  • Decorators
    • Design Patterns
    • The decorator pattern
    • Decorator Practically
    • Built-in Decorators and Standard Library Decorators in Python
    • Practical Decorators in Python Libraries

    • Travaux Pratiques
    • TP: Monte Carlo Option Pricing with Decorators
    • TP: Optimizing Heston Model Monte Carlo Simulation
  • Project Management and Packaging
    • Project and Package
    • Organizing Python Projects
    • Understanding imports
    • Python Package Management and Virtual Environments
    • Unit Testing in Python

    • Travaux Pratiques
    • TP: Creating a Linear Regression Package
  • Design Patterns
    • OOP Design Patterns
    • Python-Specific Design Patterns
    • Creation Design Patterns
    • Structural Design Patterns
    • Behavioral Design Pattern

    • Travaux Pratiques
    • TP
  • Sujets de Projets possibles
    • Projets
    • Projets POO - 2024-2025
  • Code source
  1. Type Hinting, Typing Module, and Linters in Python
  • Polymorphisme et Surcharge
  • Polymorphism in Object-Oriented Programming
  • Polymorphism in Python: Function Overloading and Type Checking
  • Class Creation: Standard vs type()
  • Type Hinting, Typing Module, and Linters in Python
  • Abstract Classes
  • Protocol Classes
  • Travaux Pratiques
    • TP

On this page

  • Type Hinting, Typing Module, and Linters in Python
    • Introduction to Type Hinting
      • Basic Type Hinting
    • The Typing Module
      • Common Types from the Typing Module
      • Type Aliases
      • Generic Types
    • Type Checking and Linters
      • Mypy
      • Pylint
      • PyCharm and Visual Studio Code
    • Best Practices for Type Hinting
    • Example: Putting It All Together
    • Conclusion

Type Hinting, Typing Module, and Linters in Python

Cours
Fondamentaux
Learn about type hinting in Python, the typing module, and how to use linters for static type checking to improve code quality and maintainability.
Author

Remi Genet

Published

2024-10-21

Type Hinting, Typing Module, and Linters in Python


Introduction to Type Hinting

Type hinting, introduced in Python 3.5 (PEP 484), allows developers to indicate the expected types of variables, function parameters, and return values. While Python remains dynamically typed, type hints provide several benefits:

  1. Improved code readability
  2. Better IDE support (autocomplete, error detection)
  3. Easier maintenance, especially for large codebases
  4. Catch certain types of errors before runtime

Basic Type Hinting

The Typing Module

The typing module provides support for type hints. It includes a collection of types and tools for working with type annotations.

Common Types from the Typing Module

Type Aliases

Generic Types

Type Checking and Linters

While Python doesn’t enforce type hints at runtime, various tools can perform static type checking:

Mypy

Mypy is a static type checker for Python. It can catch many type-related errors before runtime.

Installation:

pip install mypy

Usage:

mypy your_script.py

Pylint

Pylint is a linter that can check for coding standards, errors, and code smells. It also supports type checking.

Installation:

pip install pylint

Usage:

pylint your_script.py

PyCharm and Visual Studio Code

Popular IDEs like PyCharm and VS Code have built-in support for type checking and can highlight type-related issues in real-time.

Best Practices for Type Hinting

  1. Start with critical or complex functions
  2. Use type hints consistently throughout a module or project
  3. Utilize tools like Mypy to catch type-related errors
  4. Don’t overuse Any - it defeats the purpose of type hinting
  5. Consider using type hints in combination with docstrings for comprehensive documentation

Example: Putting It All Together

Conclusion

Type hinting, along with the typing module and linters, provides a powerful set of tools for improving code quality, readability, and maintainability in Python. While not enforced at runtime, these features can catch many errors early in the development process and provide better documentation and IDE support. As Python projects grow in size and complexity, incorporating type hints and static type checking becomes increasingly valuable.

Back to top
Class Creation: Standard vs type()
Abstract Classes

Programmation Orienté Object en Python, Rémi Genet.
Licence
Code source disponible sur Github

 

Site construit avec et Quarto
Inspiration pour la mise en forme du site ici
Code source disponible sur GitHub